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Ever’body says words different ...
Arkansas folks says ’em different,
and Oklahomy folks says ’em
different. And we seen a lady from
Massachusetts, an’ she said ’em
differentest of all. Couldn’ hardly

make out what she was sayin’.

John Steinbeck
The Grapes of Wrath (1939)






Abstract

In this dissertation a complete data-driven approach to rule-based lexicon
adaptation is presented, where the effect of the acoustic models is incorporated
in the rule pruning metric.

Robust speech recognition is an important research topic, which can con-
tribute to make systems based on automatic speech technology more user-
friendly. To achieve a robust system the variation seen for different speaking
styles must be handled. In this dissertation we have therefore investigated
how to model pronunciation variation for different speaking styles.

The method presented in this dissertation consists of data-driven solutions
to all the steps in rule-based pronunciation modelling:

e First an alternative transcription is generated from phone recognition
of each utterance, using the acoustic models in order to observe the
variation without the restriction of the recognizer’s lexicon. We use the
same acoustic models as we later will use in the recognition phase for a
consistent rule derivation and assessment.

e Alignment of the transcriptions is performed by the traditional dynamic
programming approach or by a time synchronous approach. For the
dynamic programming a data-driven method to deriving phone-to-phone
substitution costs based on the statistical co-occurrence of phones, asso-
ciation strength, is introduced.

e Rules for pronunciation variation are derived from this alignment. The
rules are pruned using a new metric based on the acoustic log like-
lihood. Well trained acoustic models are capable of modelling much
of the variation seen, using the acoustic log likelihood to assess the
pronunciation rules prevents the lexical modelling from adding variation
already accounted for.

e The pruned rules are then used to generate pronunciation variants and
the lexicon is modified.
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ABSTRACT

e Adding variants to the lexicon not only corrects errors, but may also
introduce new errors. Controlling the added confusability is therefore
important. A framework for confusability measures based on decision
theory is introduced.

The experiments start with a general investigation of standard automatic
speech recognition techniques for different speaking styles. The speaking
styles investigated are read speech and spontaneous dictation from native
speakers and read non-native speech. A general purpose pronunciation lexicon
containing variants and marked canonical pronunciations is used to compare
acoustic modelling and lexical modelling of pronunciation variation. Perfor-
mance of acoustic models of different levels of complexity is also compared.
The results show that the lexical modelling using the general purpose variants
gave small improvements, but the errors differed compared with using only one
canonical pronunciation per word. Modelling the variation using the acoustic
models (using context dependency and/or speaker dependent adaptation) gave
a significant improvement, but the resulting performance for non-native and
spontaneous speech was still far from read speech. Data-driven pronunciation
variation modelling is therefore investigated for these two speaking styles.

For the non-native task data-driven pronunciation modelling by learning
pronunciation rules gave a significant performance gain. Acoustic log likeli-
hood rule pruning performed better than rule probability pruning. The largest
improvement was seen when incorporating the variation for all the speakers
in one lexicon, making it possible to use the same lexicon and acoustic models
for all speakers.

For spontaneous dictation the pronunciation variation experiments did not
improve the performance. The answer to how to better model the variation
for spontaneous speech seems to lie neither in the acoustical nor the lexical
modelling. One of the main differences between read and spontaneous speech
is the grammar used as well as disfluencies like restarts and long pauses. The
language model may therefore be the best choice for more research to achieve
better performance for this speaking style.

Finally, alignment methods are compared. The association strength scheme
for deriving substitution costs is shown to give better performing rules than
other dynamic programming methods. The usual dynamic programming ap-
proach has difficulties: 1) for transcription errors and disfluencies (usual in
spontaneous speech) and 2) when aligning different words (for confusability
measures). We also show examples of alignments where a time synchronous
alignment may be beneficial to ensure that we compare the same acoustic
segments.
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Chapter 1

Introduction

Applications using speech technology have for long been a natural part of
many futuristic descriptions in books, films, T'V-series, and commercials. The
technology has over the last years reached a state where we see speech tech-
nology based products also being used in the real world. The acceptance
by the public increases as the technology improves, but we are still far from
the conversational interfaces encountered in fiction. The speech technology
applications in real use are limited in one way or the other to give acceptable
performance. Limitations often used are e.g. restricted vocabulary, restricted
environments, and systems tailored to one or a few users.

Among the most popular type of applications used by the general public are
travel information, call centres, and ordering phones. Many different ways of
speaking must be tolerated, and the dialogues are usually kept quite restricted
to simplify the task for the system. Another use of speech technology is
automatic dictation e.g. for medical personnel, where the system is tailored to
one person and thus can manage a larger vocabulary.

1.1 Background

A speech technology based system consists of a speech recognition system
for speech input, a speech synthesizer for speech output, and a dialogue
manager to handle the dialogue. In this dissertation, only the automatic
speech recognition (ASR) system will be considered.

Speech input is preferable when the users need to have their hands and eyes
free to do other tasks, as in a car or control room environment, or when the
device to be controlled is out of reach. Complex actions like asking for several
information items at the same time are easier using speech than a graphical
interface. Compared to a graphical interface a speech based system can easily
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refer to invisible objects. On the other hand there may be ambiguities in
referring to the objects. (If a users says “this” the system must interpret
what object “this” refers to.) The advantages by using speech rely on a
well functioning speech recognition system. With many recognition errors the
disadvantage for the user who must perform error-corrections will outweigh
the advantages. The advantages of interaction through speech can best be
utilized in a multimodal setting. Multimodal user interfaces give the user the
opportunity to choose the most suitable mode depending on the situation.

The goal of all research on ASR is to improve the performance. Improved
ASR will help make systems based on speech technology more user-friendly
and also increase the number of applications that can be speech-enabled. For
languages where the ASR research effort has been large, (e.g. US and UK
English, Japanese, German) the current technology has reached such a state
that useful applications based on speech recognition are possible, e.g. products
for controlled tasks like dictation [130]. In the future more and more advanced
speech and language based services are expected [16].

With the promising performance of state-of-the-art ASR systems it is
possible to strive for further improvements that will handle more speaker and
environmental variation. To make a speech recognition product a success there
must be few restrictions on the customer’s behaviour and environment. If ASR
systems can cope with conversational dialogues it is possible to use mixed
initiative, not only machine-driven dialogues [132]. This development calls for
a deeper understanding of the underlying principles of spoken language [42].
It also calls for an understanding of the recognizer to ensure that variation in
speech is addressed correctly. Changes in one part of the recognition system
will influence other parts of the system.

Current ASR systems have difficulties with spontaneous speech encoun-
tered in conversational dialogues, as well as accent and dialect variability.
The substantial differences between non-native speech and native speech will
also challenge a “native” ASR system. More subtle differences that are eas-
ily handled by humans (e.g. Australian versus US English) may still cause
problems for ASR. The speaker dependent variations will mainly be caused
by inter-speaker variability, but we will also encounter intra-speaker variabil-
ity, i.e. the same speaker may behave differently depending on the context
(e.g. environment and task) and over time when getting used to a system. In
this dissertation we concentrate on the variability that is not on the acoustic
level (e.g. the variability due to the differences in the vocal apparatus between
individuals), but on the variation on the lexical level that will be similar for
groups of speakers. We call this variation different speaking styles.

Our objective is to investigate both the similarities and differences among
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the different speaking styles and how to best model the variation seen. Even
if there are different types of variation, the methods for treating them may be
similar.

1.2 Robust automatic speech recognition

All ASR systems must handle variation. The same word spoken several times
by the same speaker will vary both in length and acoustical content. For
speaker independent speech recognition the voice quality and characteristics
will vary even more. The term robust automatic speech recognition is used
when we consider variation beyond the inter- and intra-speaker acoustic dif-
ferences we see even for read speech.

The variation in speech input to a speech technology based service may be
divided into three groups:

1. Pronunciation variation
2. Grammar and vocabulary variation
3. Channel and noise variation

Pronunciation, grammar and vocabulary variation will be speaker dependent
whereas channel and noise variation will depend on the environment. Trying
to make ASR handle both speaker and environment variation is crucial in
robust modelling. The research groups interested in one of these two issues
are often interested in the other one as well, as both areas must be handled
for example in public telephone services based on speech recognition.
Different speakers using different speaking styles will use different pronun-
ciations. Spontaneous speech and different dialects or accents are examples
of speaking styles with pronunciations that differ from the canonical ones
often found in pronunciation dictionaries. The population of most countries
becomes more and more multinational, and non-native users will increase the
observed variability in pronunciation even more. There will also be differences
between expert and novice users of a speech based service (e.g. fast versus
over-articulated speech). User-friendly systems should be able to recognize the
pronunciations judged appropriate by the user. One of the eight golden rules
in user interface design is to “Support internal locus of control” [102]. The
user should be spared surprising system actions when using “non-surprising”
speech. This will help the user to keep a consistent mental model of the
system, which is of great importance for a well-designed dialogue system. If the
recognizer makes errors when the user is using rare words or pronunciations,
this will be understandable for the user. To make dialogue systems using



Introduction

speech recognition more user-friendly, robustness to common pronunciation
variation is needed.

The task that the speech based application is intended for gives require-
ments for the recognizer’s vocabulary and grammar, and presents another
source of variation. The vocabulary and grammar preferred by the user
may vary dependent on e.g. non-nativeness, dialect and sociolect, as well as
differences between expert and novice users. One cannot assume that the
users of a speech technology application will stick to a well-defined grammar
(as perhaps for dictation systems). Users may be unwilling to normalize both
pronunciation and grammar. They may also be unaware of their own pecu-
liarities. Many perceive their own speaking style as normalized but all these
“normalized” variants differ. There was for example an unexpected amount
of variation in pronunciation among professional speakers when searching
for “model” speakers for Austrian German [83]. Hesitations, restarts, and
other disfluencies are also characteristics of spoken language that vary among
speakers and must be handled by the language model in a speaker-independent
system. Robustness is therefore also needed in modelling grammar variability.

The third main variable that needs to be addressed in speech recognition-
based applications is non-speech variation, e.g. noise and channel variation.
Both pronunciation and grammar variation are dependent on the user and
therefore quite different from this last type of variation that is dependent
on the environment. To control how we model the observed variation, we
should treat the environment and speaker variation separately. Acoustic model
adaptation techniques can model both speaker and environment variations.
Explicitly separating these two effects is recognized as an important area for
future research [125].

1.3 Pronunciation modelling

It is desirable for speech recognition systems to manage diverse speaking styles,
(e.g. spontaneous speech, accents and dialects, and speech from users with
different mother tongues), but such variation in user input is difficult for the
current state-of-the-art recognizers. One way of improving this is better mod-
elling of pronunciation variation. The pronunciation dictionary is therefore an
important part of the ASR. In this dissertation it is called a lexicon, a familiar
term in the speech community. A lexicon defines the transcription of the words
in terms of the acoustic model units of the recognizer. This transcription
will not necessarily look like an entry in a pronunciation dictionary made for
humans and not machines. This will be treated in more detail in section 2.2.3.

Pronunciation modelling is by no means a new issue in the ASR community,
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early efforts are reported in e.g. [8] and [95]. Pronunciation variation modelling
is still an important issue in ASR research, and overviews are for example given
in [113] and [114]. More recently multilingual ASR has become an interest [1],
which introduces new challenges for pronunciation modelling.

Pronunciation variation can be captured using linguistic knowledge, i.e. spe-
cific knowledge about how people with different accents pronounce words, but
this knowledge is not always sufficient for pronunciation modelling. As an
example, a transcription of spontaneous US English speech (Switchboard)
revealed at least 80 variants of the word “and” [43]. Non-native speech
varies even more, and the phonological rules governing the variation will
probably be different for speakers with different mother tongues. In such
cases a data-driven approach may be more suitable where we try to extract
information from a database containing the speech we want to model. The
resulting pronunciation rules will depend on the database and thus on the
language, as well as the task and speaking style. This may be favourable for
a tailored system as we then only model the variation seen for this specific
task. Nevertheless, a method that is independent of the specific database
and language is preferable, as it can be reused for other tasks without major
modifications.

Linguistic knowledge does not give sufficient information to optimize an
automatic speech recognizer. The knowledge varies from language to lan-
guage, but even for the most studied languages pronunciations are constantly
changing and the number of different speaking styles with their characteristics
makes it infeasible to have a complete picture. The speech recognition models
used today are therefore based on statistical representation and analysis, which
must be kept in mind when optimizing the system. A handbook in dialogue
design for speech technology by Balentine and Morgan [12] says (page 70):

“Such models contain statistical-processing artifacts that bear no
direct relations to human hearing, and consequently speech recog-
nition often makes mistakes humans would not make.”

All parts of the recognizer except the lexicon are usually optimized with
respect to objective criteria. A data-driven approach will enable us to use the
same criteria for the lexicon as for the other parts of the recognizer, allowing
a unified optimization of the whole system. We therefore believe a data-
driven approach to pronunciation modelling should be preferred. There is no
reason to ignore linguistic knowledge, but the effects of the pronunciation rules
derived using either method should be verified on representative speech data.

The statistically based acoustic models of current ASR systems are capable
of handling much of the variation seen in speech, also pronunciation variation.
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More complex acoustic models will for example handle many allophonic vari-
ations in a suitable way. Adaptation of the acoustic models is a successful
method to further improve individual recognizers.

Some pronunciation variation can be described as phonological, e.g dele-
tions, insertions, and larger changes (larger both in length and acoustic vari-
ation.) This kind of variation may be better handled at the lexical level.
Modelling of a group of very different speakers by adapting the acoustic models
may result in diffuse models, and in these cases pronunciation modelling
by changing the lexicon may give better performance. The two techniques
for capturing variation should be combined using the method that gives the
best result; acoustic model adaptation for the pronunciation variation at the
allophonic level, and lexicon adaptation for the more phonological variation.

Since large vocabulary recognizers always include a language model, the
effect of this model should be incorporated in the pronunciation modelling
techniques.

One of the main problems in pronunciation modelling is to make sure that
we know which variation we are modelling. The effect of the acoustic models,
the lexicon, and the language model will interact. The possibility of adding
superfluous complexity by modelling the same variation several times, or even
worse, adding contradicting changes, must be avoided.

1.4 This dissertation

In this dissertation the focus is on using the lexicon to capture speaker vari-
ation, using the same lexicon and the same acoustic models for all speakers.
Experiments on individual lexicon adaptation as well as acoustic model adap-
tation are also presented.

We believe all parts of the system should be optimized in a consistent
way. The training of the acoustic and language parts of an ASR system is
based on objective criteria, objective criteria should be used for optimizing the
lexicon also. This calls for data-driven methods in pronunciation modelling.
Knowledge about human perception and production of speech, as well as
linguistics and phonetics, is important, but must be formalized for building
the ASR system.

Different measures can be used in data-driven pronunciation modelling.
We believe the acoustic likelihood should be utilized as a measure in pro-
nunciation modelling. We then take into consideration the variation already
modelled by the acoustic models and thereby give a measure consistent with
the optimization of the whole ASR system.

One of the major drawbacks with data-driven modelling is that we are
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restricted to variation present in the lexicon adaptation data. Direct modelling
of pronunciation variation by deriving alternative pronunciations for words
present in sufficient numbers in the adaptation data, has been shown to give
improvement, e.g. in [49]. To model pronunciations for words not present in
the lexicon adaptation data (“unseen words”), it is necessary to extend the
method to modelling pronunciation rules, and thereby generalize the variation
seen in the adaptation data. This gives many new challenges on how to derive
the rules and how to generate and assess pronunciation variants from them.

One reason for the modest improvements achieved in pronunciation mod-
elling is the lack of a way to control the confusability between pronunciations.
To make lexica tailored to a person or group we cannot rely on just adding
extra pronunciations, we must also remove confusable ones. The use of dis-
criminative methods in choosing which pronunciations to add to the lexicon
is one way of solving this problem.

Pronunciation modelling consists of several steps, including alignment of
the reference and alternative transcriptions. Although this is a small part of
pronunciation modelling (and therefore the whole system), we have investi-
gated alignment methods based on objective criteria in order to be consistent
in all parts of the pronunciation modelling.

Last, but not least, it is important to gain knowledge on the effect of
the different variation modelling techniques for different speaking styles. The
impact of various standard ASR techniques on different speaking styles has
been therefore investigated.

1.4.1 Contributions of the dissertation

e Data-driven pronunciation rule assessment using acoustic like-
lihood:
In this dissertation the acoustic likelihood derivation and selection of
pronunciation variants presented in [49] is expanded to derivation and
selection of pronunciation rules. The advantage of consistent optimiza-
tion when using an acoustic likelihood based metric is combined with
the possibility to model pronunciations for unseen words.

¢ Data-driven alignment using dynamic programming with phone
to-phone substitution costs derived using the data:
Current alignment methods use costs for phone-to-phone substitutions
based on phonetic knowledge or phone identity only. In this dissertation
we present a data-driven approach to derive the costs. This method is in-
spired by the grapheme-to-phoneme conversion in [68]. These costs may
be more suitable than phonologically based costs when the alternative
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transcription to be aligned is automatically derived without phonological
constraints. This method also gives the possibility of non-symmetric
mappings.

e Data-driven pronunciation rule derivation using time synchronous

alignment:

Another alignment alternative using the time information provided by
the ASR system is presented in this dissertation. Using this alignment
method we assure we compare the transcriptions of the same acoustic
segments. This method also provides pronunciation rules without the
need for an extra rule derivation step. Corresponding acoustic likelihood
scores are also derived as a by-product.

e Comparisons of standard variation modelling techniques for
different speaking styles:
State-of-the art variation modelling techniques are evaluated in this
dissertation for different speaking styles. The study is focused on the
comparison of acoustic and lexical modelling.

e A framework for decision theory applied to pronunciation mod-
elling:
An assessment method for confusability is important. In this dissertation
known decision theory methods, e.g. from [61] and [67], are used to
derive confusability measures given a lexicon and an appropriate lexicon
adaptation set.

1.4.2 Outline of the dissertation

Chapter 2 describes the basics of the automatic speech recognition system
at the level necessary to understand the experiments in this dissertation.
The description starts with a short explanation of elements from phonetics
and phonology that are relevant for ASR systems. Three ways of modelling
pronunciation variation in different parts of the recognizer are outlined. A
section on statistical considerations is also included in this chapter. The
kinds of variation in spoken language that can be addressed by pronuncia-
tion modelling, in this dissertation called “speaking styles”, are described in
chapter 3. Language modelling topics concerning speaking style variation are
also described. Modelling pronunciation variation is also closely related to
the adaptation of the acoustic models; this subject is described in chapter 4.
Lexicon adaptation is the main subject of this dissertation and is described in
chapter 5. Chapters 3, 4, and 5 give an overview of previous work in the field.
The theory underlying the experiments in this dissertation is given in chapter
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6. Experiments are described in the result chapters 7, 8, 9, and 10. These
4 result chapters conclude with discussions and short summaries. Finally, a
concluding summary is given in chapter 11.

1.4.3 List of publications

Parts of the results presented in this dissertation are published in the following
publications:

e [. Amdal and T. Svendsen, “Evaluation of pronunciation variants in the
ASR lexicon for different speaking styles,” in Proc. LREC-2002, (Las
Palmas de Gran Canaria, Spain), pp. 1290-1295, 2002.

e 1. Amdal, F. Korkmazskiy, and A. C. Surendran, “Joint pronunciation
modelling of non-native speakers using data-driven methods,” in Proc.
ICSLP-2000, (Beijing, China), pp. I11:622-625, 2000.

e . Amdal, F. Korkmazskiy, and A. C. Surendran, “Data-driven pro-
nunciation modelling for non-native speakers using association strength
between phones,” in Proc. ISCA ITRW ASR2000, (Paris, France),
pp- 85-90, 2000.

The results on maximum likelihood variants in section 8.3.2 are based on
similar experiments published in:

e I. Amdal, T. Holter, and T. Svendsen, “Modellering av uttalevariasjon
for automatisk talegjenkjenning” in Nordlyd (Tromsg University working
papers on language & linguistics), vol. 28, pp. 74-87, 2000.

e I. Amdal, T. Holter, and T. Svendsen, “Maximum likelihood pronun-
ciation modelling of Norwegian natural numbers for automatic speech
recognition,” in Proc. Norwegian Signal Processing Symposium (NOR-
SIG), (Asker, Norway), pp. 145-150, 1999.

Further work on confusability metrics is presented in:

e E. Fosler-Lussier, I. Amdal, and H.-K. J. Kuo, “On the road to improved
lexical confusability metrics,” in Proc. ISCA ITRW Pronunciation Mod-
eling and Lezicon Adaptation (PMLA), (Estes Park (CO), USA), pp. 53—
58, 2002.
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Earlier work with relevance to pronunciation modelling is presented in:

e K. Kvale and 1. Amdal, “Improved automatic recognition of Norwe-
gian natural numbers by incorporating phonetic knowledge,” in Proc.
ICASSP-97, (Munich, Germany), pp. 1763-1766, 1997.

e K. Kvale and I. Amdal, Automatic recognition of Norwegian natural
numbers over telephone lines, Telenor R&D report 19/97, 1997.



Chapter 11

Concluding summary

In this dissertation pronunciation variation modelling for different speaking
styles has been investigated. We have interpreted the term “speaking styles”
widely, we have included not only read and spontaneous speech, but also
non-native speech. A goal for the research on ASR is to make applications
based on speech technology more user-friendly. To achieve this it is important
that the system can accept pronunciations that are perceived as normal by
the user. Spontaneous and non-native speech that is “normal” in the sense
that humans recognize it without problems, causes problems for current ASR
systems. We believe that a better modelling of pronunciation variation will
give a more robust system for different speaking styles.

Pronunciation variation can be modelled in different parts of the ASR
system: the acoustic models, the lexicon, or the language model. This dis-
sertation is focused on lexical modelling, but the pronunciation modelling
technique presented utilizes assessment metrics incorporating both acoustic
models and implicitly the language model. A joint optimization can prevent
adding variation in one part of the system that is already sufficiently modelled
in another part of the system, or even worse; adding contradicting variations.
We therefore strive for a unified optimization using objective criteria for all
parts of the ASR system, including the lexicon.

A complete data-driven approach to pronunciation rule derivation was
presented in this dissertation. Using rules we can generalize from the variation
seen in the adaptation data to words not present in these data. The method
presented shows how to use the acoustic log likelihood as a metric to assess
the rules.

143
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11.1 Variation modelling for different speaking styles

We have shown in chapter 7 that augmenting the recognizer lexicon with pro-
nunciation variants found in a general purpose lexicon gave small performance
gains, and most for read native speech. Error analysis showed that the system
using a single canonical pronunciation generated different errors than the one
using pronunciation variants, although the word error rate was similar. For
non-native speech we observed no improvement for context-dependent acoustic
models compared to context-independent models. This speaking style had
the largest gain using speaker dependent acoustic model adaptation, but the
performance was still far from the results for native speech. For spontaneous
speech we observed less improvement by speaker adaptation than for read
speech.

11.2 Data-driven pronunciation rule derivation and
assessment

Baseform variant generation by using data-driven rule derivation can be de-
scribed in five steps (repeated from section 5.4):

1. Automatically generate alternative transcriptions
2. Align the reference and alternative transcriptions
3. Derive rules from the alignment

4. Assess and prune the rules

5. Generate baseform variants from the rules, assess the variants, prune or
assign weights, and modify the lexicon

In this dissertation data-driven approaches were presented for all steps, but
the main contributions are on steps 2, 4 and 5. For step 2 we have introduced
association strength as a way to derive phone substitution costs from the data.
For step 4 we have introduced a metric based on acoustic log likelihood and
for step 5 we have presented a framework for a confusability metric based on
decision theory.

In chapter 8 the methods presented were evaluated on non-native speech.
The results show that the acoustic log likelihood pruning gave improved per-
formance compared with the more traditional rule probability pruning. We
observed a better performance when modelling the non-native speakers jointly
than individually. This was a surprising result, as the speakers had quite
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different language backgrounds, but may be because the amount of data used
was small. Even if the joint set of non-native speech was more diverse, the
larger amount of data was beneficial to get a more reliable rule selection for
the data-driven methods investigated. The confusability metric gave inconsis-
tent results for this task, showing the vulnerability for the method when the
vocabularies of the adaptation and test sets differ strongly.

For spontaneous dictation the results in chapter 9 showed no benefit by
using the same pronunciation modelling techniques as used for non-native
speech, neither for rule probability pruning nor acoustic log likelihood pruning.
One reason may be that the rather simple rules investigated in this dissertation
only modelled variation that already was sufficiently modelled by the acoustic
models. The reason may also be that pronunciation modelling is not the main
answer to better modelling of this speaking style.

11.3 Alignment

In chapter 10 some shortages of current alignment methods were identified. To
compare dynamic programming alignment methods with different substitution
cost schemes, we have compared WER after rule based pronunciation variation
modelling using the different alignments. The non-native task was chosen for
this experiment and the alternative transcription was made using a phone
loop. The statistically based association strength was shown to produce equal
or better performing rules than uniform or phonetically based substitution
costs.

The usual dynamic programming approach has difficulties: 1) for tran-
scription errors and disfluencies (usual in spontaneous speech) and 2) when
aligning different words (for confusability measures). We have shown examples
of this where a time synchronous alignment may be beneficial to ensure that
we compare the same acoustic segments.

11.4 Conclusions

Current ASR systems perform substantially worse for both non-native and
spontaneous speech than for read speech. In this dissertation we have therefore
investigated a data-driven approach to rule based lexicon adaptation for these
two speaking styles.

For a spontaneous dictation task the proposed method did not give any
improvement, nor did more traditional rule probability based pronunciation
modelling. The recognized strings were similar to the baseline result; the vari-
ation modelled by the rules did neither correct, nor introduce errors. Baseform
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variants from a general purpose lexicon did not give any improvement either,
but here the errors differed compared with using one canonical baseform entry.

For the non-native task we observed the same effect as for spontaneous
speech when adding general purpose variants: The errors differed, but the
performance did not. The proposed rule-based lexicon adaptation gave sig-
nificant improvements for this task, and we observed larger gain for the new
acoustic log likelihood metric compared with a rule probability metric.

The results indicate that we should choose different ways to model pronun-
ciation variation for these two speaking styles. However, the rules investigated
in this dissertation are rather simple and this may be one reason why they were
better able to model the larger shifts in pronunciation present in non-native
speech. Further research combining more sophisticated rule derivation with
the proposed acoustic log likelihood pruning should be tried before we reject
the hypothesis that pronunciation variation modelling also will give a better
performance for spontaneous speech.

One of the main differences between read and spontaneous speech is the
grammar used as well as disfluencies like restarts and long pauses. The
language model may therefore be the best choice for more research to achieve
better performance for this speaking style.

Even if speaker adaptation was shown to give large improvements for non-
native speech, the resulting performance was worse than for native speech
on the same task. To achieve results more comparable to native speech, a
combination of lexical and acoustic adaptation may be beneficial. It is then
crucial to use a metric for the pronunciation rule and variant pruning that
incorporates the variation accounted for by the acoustic models. The proposed
metric in this dissertation is a step towards this goal.

11.5 Some directions for further work

The rules investigated in this dissertation are rather simple. We have only
looked at phone identity as context for the transformation. We will then only
be able to model the phone sequences seen in the adaptation data. CART
based rule modelling is one way of generalizing the context automatically
from the data, and a combination of CART based rule derivation and acoustic
log likelihood assessment would therefore be interesting for further studies.
With a better generalization (or more data) more sophisticated rules could
be derived using more information, e.g. stress and syllable information or for
non-natives especially, orthographic information. Coarticulaton effects across
word borders should also be included in the variation modelling.

The step from rules to variants needs more attention. We have in this
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dissertation assessed only the most important variants by the restriction of
applying only one rule to each baseform. A rule hierarchy based on an acoustic
log likelihood metric must be formulated to extend the method presented to
using several rules in one baseform.

The unigram language model was implicitly incorporated in the rule prun-
ing metric. This was done by assessing the total effect instead of the relative
effect of the rules. We then incorporate the word probability found in the
adaptation set. Higher order language models should be incorporated, and
more explicitly by using the probabilities from the language model defined
for the task. The probabilities given will then be the same as used in the
recognition phase. The task language model is usually trained on much larger
amounts of text data than in the adaptation data and will give more reliable
estimates for the probabilities. One problem with assessing the total effect is
that we then needed the extra restriction of using only one rule for each rule
condition. A clustering procedure where we ensure that each acoustic segment
only contributes once may be beneficial.

Controlling the confusability is important. A joint optimization using
acoustic log likelihood in the pronunciation rule pruning will to some extent
help to reduce the confusability by preventing addition of superfluous varia-
tion. For a proper confusability metric the combined effect of the baseforms
should be assessed. We have in this dissertation presented a framework for
discriminative pronunciation assessment with confusability measures based on
decision theory. Assessing this framework on data with better agreement
between the adaptation and test data than the non-native task should be
investigated. When a suitable metric is found it can be used in data-mining
approaches to find the optimal set of baseforms.

One difference between the non-native and spontaneous tasks we have
investigated is that for the non-native speakers we derived pronunciation rules
from an adaptation set with the same speakers as in the test set. Deriving
speaker dependent lexica is an interesting task for future research where the
main challenge is that we normally will have small amounts of data for each
speaker.

Dialects and native accented speech are not investigated in this disserta-
tion, but we may assume that these speaking styles will behave more similar to
non-native speech than spontaneous speech. An investigation of the proposed
method, and refinements of it for dialect pronunciation modelling, should be
investigated.
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