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ABSTRACT

This paper addresses the problem of optimizing
the pronunciation lexicon for use in speaker indepen-
dent automatic speech recognition. The method in-
vestigated in this paper utilizes sample utterances of
the vocabulary words in a data-driven manner. The
optimization procedure is based on the maximum like-
lihood (ML) criterion, and might generate multiple
baseforms for each word in order to model pronunci-
ation variation.

The experiments show that incorporating ML pro-
nunciation variation modelling in the natural num-
ber recognizer, improved the relative word error rate
(WER) performance 6-19%, dependent on the com-
plexity of the subword acoustic models.

1. INTRODUCTION

Modelling pronunciation variation is an important is-
sue in today’s research on automatic speech recogni-
tion. To make dialogue systems more user-friendly,
spontaneous speech, noise and varying environments
must be handled. Such variation in the user’s input
is difficult for the current state-of-the-art recognizers.
Much of the effort used in modelling speaker varia-
tion has, until recently, been put into the acoustic
modelling, thereby removing effects due to individ-
ual differences among speakers, e.g. pitch variation.
Some of the variation in pronunciation is caused by
speaking style, speaking rate and dialect, and may be
better handled by careful design of the pronunciation
dictionary.

The most common way of dealing with pronuncia-
tion variation is to add several pronunciation models
for each word in the recognizer’s lexicon. This must be
done with care. By adding entries to the lexicon, the
number of similar variants, and thereby the acoustic
confusability, will increase. This may in turn decrease
the recognition performance. This problem is partly

solved in this paper by the ML based optimization
procedure.

Connected natural number recognition over tele-
phone lines is chosen as the task for the experiments
for several reasons; recognition of natural numbers is
important in most dialogue systems (which is the in-
tended application), the words demand sophisticated
modelling because they are short and similar and be-
cause frequently used words, e.g. numbers, are often
pronounced with more variation [1]. One final rea-
son for choosing natural numbers; the vocabulary is
limited, making error analysis feasible. Earlier exper-
iments [2, 3] have shown the need for careful pronun-
ciation modelling for this task.

2. PRONUNCIATION VARIATION
MODELLING

A subword based recognizer consists of acoustic mod-
els representing subword speech units (like phones)
and a pronunciation lexicon which states the corre-
spondence between the speech units and the words
we wish to recognize. These pronunciation models
are often called baseforms. One way of dealing with
pronunciation variation is to introduce multiple base-
forms for each word in the lexicon. There are two
problems:

1. How do we chose the baseforms? The knowledge
of how people really talk is not always sufficient.
Besides, the acoustic models used in a recognizer
does not necessarily correspond to the abstract
linguistic units used to describe the pronuncia-
tion of a language.

2. Multiple baseforms for each word gives the rec-
ognizer more options to chose from and we may
experience an increased error rate as an extra
baseform for one word may be too similar to
the baseform for a different word. Rarely used
baseforms may introduce many errors compared



to the ones corrected. This can be helped by
adding costs to the alternate baseforms [4].

There are two main approaches to lexicon design:

1. Ruled-based methods:
a set of pronunciation rules are generated from
phonetic and linguistic knowledge.

2. Data-driven methods:
databases of real speech are employed in order
to design the desired baseforms.

In this paper we use the data-driven approach as
this employs objective criteria for lexicon design.

2.1. Baseform optimization

Usually all parts of the recognizer except the lexicon
are carefully optimized with respect to objective cri-
teria. In this paper we have utilized the ML criterion
for the lexicon design as well as for subword hidden
Markov model (HMM) training. Several methods for
baseform optimization are described in [5]. The opti-
mal baseform for each word is defined as the baseform
B’ that maximizes the likelihood of a set of sample ut-
terances T of the word, given a set of valid baseforms
B and an HMM set defined by its parameters 6:

B' = argmax{P(T | B,6)} (1)
BeB

This criterion can be used with any grammar defin-
ing B. However, for maximum flexibility, no con-
straints should be put on the search space. This is
achieved with the phone-loop grammar, i.e., a gram-
mar in which any number of phones in any order may
constitute a baseform. The modified tree-trellis algo-
rithm proposed in [6] is an effective search algorithm
which offers a solution to the optimization problem.
This procedure is described in larger detail in [7].

The EMCM algorithm reduces the search com-
plexity by constraining the candidate baseforms B to
the N most likely phone-strings obtained by a phone-
loop recognition of each of the sample utterances (in
this experiment 200). Results in [5] indicate that the
suboptimal EMCM algorithm performs similar to the
unconstrained ML solution for N > 5. In this paper
N =10 is chosen.

2.2. ML pronunciation variation modelling

In principle, the algorithms described in Section 2.1
are capable of finding the M most likely baseforms,
given all training utterances. However, in order to
model pronunciation variation, different baseforms
should model different subsets of the training sam-
ples. A two-stage ML based algorithm for this task
is described in [5]. In stage 1, 1 to M (M = 4 in

| | # speakers | # sentences | # words |

Training set 382 4475 26680
Validation set 200 2338 13846
Test set 200 2330 13821

Table 1: Partitioning of TABU.O.

our experiments) candidate baseforms are found inde-
pendently for each word by a ML k-means clustering
procedure. Each candidate baseform represents one
cluster of the available sample utterances. In stage
2, the lexicon is composed on basis of the baseforms
found during stage 1. The main idea is to start with
a lexicon containing a single baseform for each word,
and then increment the total number of baseforms by
one in each step, in a manner that guarantees a max-
imum increase of the total likelihood. This process is
repeated until the total number of baseforms in the
lexicon reaches a predetermined limit.

3. THE SPEECH DATABASES USED

3.1. TABU.0

The experiments are based on the Norwegian 1000
speakers TABU.0 telephone speech database [8]. 10
different manuscripts were used, i.e. 100 speakers
would use each manuscript. Each manuscript con-
tained, among other items, 12 different telephone num-
bers, where each 8-digit telephone number was listed
as 4 number-pairs.

3.2. The Norwegian part of SpeechDat

The SpeechDat project [9] has recorded speech data-
bases in 21 different European languages. The Nor-
wegian part consists of 1000 speakers recorded via the
fixed telephone network (as TABU.0). The contents
of the database are digits, natural numbers (among
them 1 telephone number), letters, command words,
phonetically rich isolated words, names and sentences.
All speakers had different manuscripts.

3.3. The use of the databases in these experi-
ments

In this experiment the TABU.0 database was used
as sample utterances for the baseform optimization
(training set), validation set and test set, see Ta-
ble 1. There were at least 200 utterances of each word
present in the training set except “og” which occurred
123 times.

To examine dialect effects, the test set was par-
titioned into 5 regions; north, middle, west, south-
west and southeast. The southeast region has approx-



word| orth. phon. word| orth. phon.
trans. trans. trans. trans.

0 null n}l 17 | sytten |s2tn

1 en e:n 17 sytten | sytn

1 ein {in 17 | sytten |s2ten

2 to tu: 17 sytten | syten

3 tre tre: 18 atten Atn

4 fire fi:re 18 atten Aten

5 fem fem 19 nitten | nitn

6 seks seks 19 nitten | niten

7 sju S }: 20 | tjue Che

7 Syv Sy: v 20 tyve ty:ve

8 atte Ote 30 tretti treti

9 ni n i: 30 tredve | tredve

10 ti ti: 40 forti f2rti

11 elleve elve 40 fgrr f2r

12 tolv t 01 50 femti femti

13 tretten | tretn 60 seksti seksti

13 tretten | treten || 70 sytti s2ti

14 fjorten | fjurtrn || 70 sytti syti

14 fjorten | fjurten || 80 atti Oti

15 femten | femtn 90 nitti niti

15 femten | femten og O:

16 | seksten | s {istn

16 | seksten | s {isn

16 seksten | sekstn

16 | seksten | s{isten

Table 2: The baseline lexicon for the natural number
vocabulary.

imately twice as many speakers as each of the other
regions, which are of approximately equal size. There
is a tradeoff in partitioning the test set between ho-
mogeneous dialect regions and the number of speakers
in each region needed for significant results. The cho-
sen 5 regions each contain several dialects, but some
major differences should still be present.

The Norwegian SpeechDat database was used for
training of the HMMs used both for baseform op-
timization and testing. This database has approxi-
mately the same dialect distribution as TABU.0. The
baseline lexicon was also extracted from the Speech-
Dat lexicon. For the 29 words needed to utter Nor-
wegian natural numbers 0-99, 2 of the words had 4
pronunciations and 11 of the words had 2 pronun-
ciations. This adds up to a total of 46 baseforms,
i.e. 1.6 baseforms per word on average, see Table 2
(in SAMPA! transcription). With these entries the
SpeechDat number lexicon is believed to cover the
major dialect variations.

Alternatives for the four numbers “7”, “20”, “30”
and “40” were analysed in [2] and the pronunciations
were found to be distributed as shown in Table 3.

Ihttp://www.phon.ucl.ac.uk/home/sampa/norweg.htm

| word | phon. trans. | distr. [%] |

7 S }: 70.4
Sy: v 29.6
20 Che 82.5
ty:ve 17.5
30 treti 68.8
tredve 31.2
40 f2rti 97.5
f2r 2.5

Table 3: Distribution in the TABU.0 database of pro-
nunciation for four of the numbers.

4. EXPERIMENTS

The HMMs were trained on SpeechDat according to
the recipe “refrec093” made by the “COST 249 Speech-
Dat task force”2. This recognizer is based on the Hid-
den Markov Model Toolkit (HTK V.2.1) [10]. Exper-
iments made on an earlier version of this reference
recognizer is reported in [11]. The main difference is
that the more recent “refrec093” is suitable for real-
time applications, as the Oth cepstral coeflicient is
used instead of normalized energy, and cepstral nor-
malization is not applied. The HMMs were used both
for finding the ML optimized baseforms as described
in Section 2 and for comparing the performance of
the new lexica to baseline through recognition experi-
ments. The observation probability density functions
(pdfs) for each of the 3 states in the HMMs were mod-
elled as Gaussian mixtures. The experiments were
performed for varying acoustic details in the models
by using from 1 to 16 mixture components.

A word-loop grammar with uniform transition
probabilities was used instead of the number gram-
mar employed in [2] and [3], thus avoiding effects of
the grammar constraints in the tests. The comparison
between the lexica should still be valid although the
resulting performance will be worse without the gram-
mar constraints. An approximated two-sided 95%
confidence interval for the tests is 1.7 for 50% WER
and 1.5 for 30% WER.

5. RESULTS

5.1. Number of baseforms chosen

The first experiments were performed on the valida-
tion set to find the optimal number of baseforms in the
new lexica generated by ML optimization. The per-
formance of the new lexica showed a small increase
in performance when adding more baseforms up to a
certain point, when the performance would start to
decrease somewhat. For the tests with more complex

Zhttp://wuw.elis.rug.ac.be/ELISgroups/speech/cost249/



Tested on 1-comp. HMMs
55 40

Tested on 16—comp. HMMs

baseline 1-comp.

“““ train 16—comp. HMMs coe train 1-comp.HMMs
+='=train 4—comp. HMMs +='=train 4—comp. HMMs
== - train 2-comp. HMMs = = - train 8—comp.HMMs
—— train 1-comp. HMMs —— train 16—comp. HMMs

a
[=]
T

351

WER [%]
WER [%]

. baseline 16-comp. ,
r- *,: A A

N
o

30

40 25
1 1.5 2 2.5 3 1 1.5 2 25 3
Average number of baseforms per word Average number of baseforms per word

Figure 1: ML optimized baseforms with mismatch in
training and test regarding HMM complexity.

HMMs (a larger number of mixture components) the
maximum performance was achieved with a smaller
lexicon. The validation set tests also indicated im-
provement over baseline, although less relative im-
provement for more complex HMMs.

More detailed testing was performed for 1.0, 1.6,
and 1.8 baseforms per word on average. As the base-
line had 1.6 baseforms per word we wanted to test the
two systems with equal complexity. We also wanted
to test the optimal lexica derived with the ML op-
timization without this constraint as the new lexica
might model other effects than the baseline lexicon.
To find the optimal lexicon we could have found in-
dividual number of baseforms to use for the different
HMMSs used to train the lexicon. As the performance
was similar for a large region of lexicon sizes we chose
the average of 1.8 baseforms per word. This was the
mean minimum and close to minimum for all config-
urations in the validation set tests. In the following,
the ML optimized lexica with averages of 1.0, 1.6, and
1.8 baseforms per word are denoted ML_1.0, ML._1.6,
and ML_1.8, respectively.

5.2. Recognition performance

We performed some experiments on the test set with
varying number of baseforms to examine mismatch
between training and testing HMM complexity, i.e. a
different number of components was used in the HMM
pdfs during baseform optimization and testing. The
ML optimized lexica outperformed the baseline in
these tests (as in the validation set tests). Not sur-
prisingly, we found that the best performance was
achieved when the same number of mixture compo-
nents was used in the pdf mixtures for training and
testing, see Figure 1. This effect is mainly experi-
enced for low complexity HMMs and it seems that us-
ing simpler HMMs during baseform optimization will
give only minor, if any degradation in performance.

HMM | lexicon WER | rel. impr.
comp. [%] [%]
1 | baseline 1.0 51.4
1| ML_1.0 45.4 11.8
2 | baseline 1.0 47.6
2 | ML_1.0 44.1 7.3
4 | baseline 1.0 42.0
4 | ML_1.0 39.5 6.0
8 | baseline 1.0 36.7
8 | ML_1.0 34.3 6.6
16 | baseline 1.0 32.2
16 | ML_1.0 30.5 5.2

Table 4: ML optimized lexica compared to baseline,
both with one baseform per word.

HMM | lexicon WER | rel. impr. | rel. impr.
comp. [%] to base- to corr.
line [%] 1.0-lex [%]
1 | baseline 1.6 54.4 -5.8
1 | ML_1.6 43.8 19.4 3.4
1 | ML_1.8 43.2 20.6 4.9
2 | baseline 1.6 49.7 -4.3
2 | ML_1.6 41.5 16.6 6.1
2 | ML_1.8 41.5 16.5 6.0
4 | baseline 1.6 42.8 -1.8
4 | ML_1.6 38.5 9.9 2.4
4 | ML_1.8 38.7 9.5 1.9
8 | baseline 1.6 36.6 0.2
8 | ML_1.6 32.7 10.7 4.6
8 | ML_1.8 32.2 12.0 6.0
16 | baseline 1.6 31.7 1.3
16 | ML_1.6 29.9 5.8 2.0
16 | ML_1.8 30.1 5.0 1.2

Table 5: ML optimized lexica compared to baseline,
both with multiple baseforms per word.

A baseline lexicon containing a single baseform per
word was made using the assumed most common pro-
nunciation. These baseforms are given as the first
baseform for each word in Table 2. Table 4 compares
the results achieved with this lexicon to the ML_1.0
lexica. To our surprise this baseline performed simi-
larly to the 1.6 baseform per word-lexicon, as shown in
Table 5. The last column in Table 5 shows the relative
improvement for each of the multiple baseform lexica
compared to the corresponding single baseform lex-
ica. The improvement with the ML optimized lexica
over baseline is substantially higher with the multiple
baseform lexica ML_1.6 and ML_1.8, except for the 16-
component HMMs; this is partly due to the decrease
in baseline performance when adding more baseforms.
The improvement for the 1-component HMMs is as
high as a 19% relative decrease in WER, whereas for



the more complex 16-component HMMSs the improve-
ment is 6% and the same as for one baseform per
word. The new lexica ML_1.6 and ML_1.8 performed
similarly except for the 8-component HMMs where
the ML_1.8 lexicon was better.

5.3. Lexicon analysis

We examined the details of the iterative algorithm
used to add multiple baseforms in the ML optimized
lexica. Which words that first are assigned alterna-
tive multiple baseforms varies using different number
of components in the HMM mixture pdfs. Some words
are still more frequently chosen: “77, “13”, “14”,
“16”, and “30”. These words are thus least sufficiently
modelled by a single baseform, according to the ML
criterion. All of these words also have multiple base-
forms in the baseline lexicon. The last words which
are assigned multiple baseforms also varies; the two
least frequently chosen words are “9” and “10”, and
these words have only one baseform in the baseline
lexicon as well. The data-driven lexicon generation
algorithm agrees with linguistic knowledge on which
words need more careful lexical modelling.

When the 1-component HMMs were used in train-
ing of single baseform lexica, 6 baseforms were iden-
tical to baseforms in the baseline lexicon. For the 16-
component HMMs this number increased to 18. Sur-
prisingly, this number did not increase further when
ML_1.6 was compared to baseline. The equal base-
forms were (with one exception) in the single baseform
baseline lexicon.

We also examined the distribution of the different
baseforms for each word in order to investigate if some
baseforms were more frequently used in specific re-
gions. This was done by forced alignment, inspecting
the baseforms that gave 10% or more deviation in one
or more regions compared to the baseform distribu-
tion for the whole test set. For the baseline the results
were similar to the previous reports on TABU.0. The
optimized lexica gave more baseforms with skewed
distribution, e.g. for the word “5” the form /f {: m/3
were used in 80-90% of the occurrences in the north,
middle and west regions whereas only in 50% for the
southeast region where the form /f e rn/ was equally
frequent. It seams that some dialect variations are
better modelled than in the baseline lexica.

5.4. Dialect aspects

In Norway dialects are accepted when communicat-
ing orally in any situation, both formal and informal.
This means that dialogue systems that are able to
accept dialect variation will be if not demanded, cer-
tainly preferred. We examined the results for each

3ML_1.6 trained with 16-component pdfs
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Figure 2: ML optimized lexicon with 1.8 baseforms
per word compared to baseline for different regions

of the 5 regions in the test set to see if any dialect
modelling effect of the ML optimized lexica was vis-
ible. The improvements for the 5 regions differ, but
it seems that which region has the largest improve-
ment is dependent on the number of components in
the HMM pdfs used for baseform optimization.

For the models with low acoustic detail, a large
proportion of the lexical entries may be used for mod-
elling of allophonic differences, as this is not captured
by the HMMs. We also believe that these lexica cap-
ture dialect variation used in larger regions. With the
1-, 2-, and 4-component HMMSs, the largest perfor-
mance gain is achieved in the north region. As more
detailed acoustic models are employed, the effort in
the baseform optimisation seems to be moved towards
modelling of phonemic variations. This hypothesis is
supported by the fact that the largest improvement
with 8- and 16-component HMMs is achieved in the
southeast region.

When inspecting the 1-component ML_1.6 lexicon
we see that some baseforms may be interpreted as
more or less allophonic; /e: rn n/ and /{: {i m/ for
“1” and /s 2rti/ and /s 2y t i/ for “70”. The two
variants for “7”; /S }: }/ and /s y:/, may on the other
hand be interpreted as the frequently used two forms
of “7” also present in the baseline lexicon. In the
16-component ML _1.6 lexicon we still find allophonic
variants like /f {: m/ and /f e rn/ for “5”, but we
also have more phonemic variants like /s {i s t n/ and
/sekst}rm/ for “16” and /C }: ¢/ and /Cy: v
2:/ for “20” not present in the 1-component lexicon.
A more detailed analysis is necessary to gain more
insight about which effects the ML optimized lexica
model better than the baseline lexica.



6. DISCUSSION AND CONCLUSIONS

The optimized lexicon resulted in significant WER im-
provement compared to the baseline lexicon. We also
note that further improvement is achieved when mul-
tiple baseforms are incorporated for each word. This
effect was not experienced for the manually gener-
ated lexica, thus suggesting that the ML based opti-
mization scheme is particularly well suited to model
variation in pronunciation by adding the correct ex-
tra baseforms. When adding multiple baseforms, the
number of baseforms in the optimized lexica which
were identical to the baseforms found in the baseline
lexicon did not increase.

Some expected results were experienced when the
results were analysed; there was less improvement for
more complex HMMs and the results were better with
matching HMMs complexity in training and test, al-
though this was of less importance for more complex
HMMs. With more complex HMMs, a larger propor-
tion of the optimized baseforms were identical to the
corresponding entries in the baseline lexicon. This is
not surprising, as the more complex HMMs are able to
model a larger degree of allophonic variations result-
ing in acoustic HMMs which correspond more closely
to phonemes.

Earlier results [3] on the same task reports much
better figures of WER?, but using quite different and
more sophisticated HMMs (context dependent and
vocabulary tuned) and a more constrained language
model.

The main result is that it is possible to find base-
forms from sample utterances that outperforms tailor
made baseforms. Although the improvement is less
for more complex HMMs, this is still an useful al-
gorithm for finding a lexicon covering the variations
found in the vocabulary. To find out exactly what
is modelled better by the ML optimized baseforms,
a more thorough analysis of the corrected errors are
needed.
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